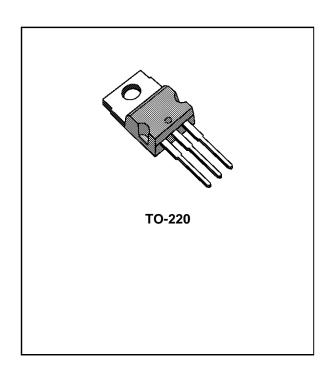
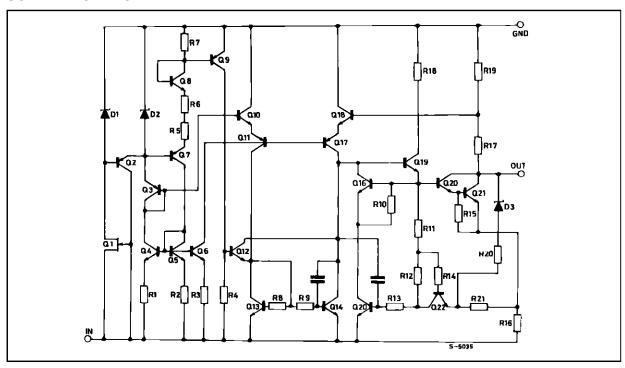


L7900AB/AC SERIES


± 2% NEGATIVE VOLTAGE REGULATORS

- OUTPUT CURRENT UP TO 1.5A
- OUTPUT VOLTAGES OF -5; -5.2; -6; -8; -12; -15; -18; -20; -22; -24V
- THERMAL CIRCUIT PROTECTION
- OUTPUT TRANSISTOR SOA PROTECTION

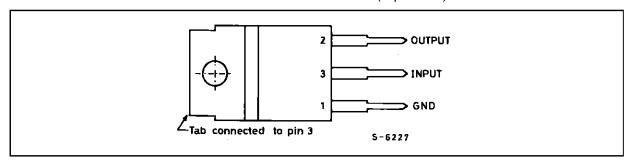

DESCRIPTION

The L7900A series of three-terminal negative regulators is available in TO-220 package and with several output voltage. They can provide local on-card regulation, eliminating the distribution problems associated with single point regulation; furthermore, having the same voltage options as the L7800 positive standard series, they are particularly suited for split power supplies. In addition, the -5.2V is also available for ECL system.

If adeguate heatsinking is provided, the L7900A series can deliver an output current in excess of 1.5A. Although designed primarly as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

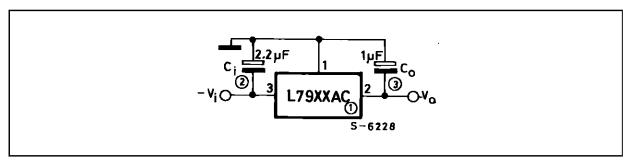
SCHEMATIC DIAGRAM

January 1993 1/10


ABSOLUTE MAXIMUM RATING

Symbol	Param	eter	Value	Unit
Vi	DC Input VOltage (for $V_0 = -5$ to -1 (for $V_0 = -20$, -2)	,	-35 -40	V
Ιο	Output Current		Internally Limited	
P _{tot}	Total Power Dissipation		Internally Limited	
T _{op}	Operating Junction Temperature	for L7900AC for L7900AB	0 to 125 -40 to 125	°C
T _{stg}	Storage Temperature		-65 to 150	°C

THERMAL DATA


R _{thj-case}	Thermal Resistance Junction-Case	Max	3	°C/W
R _{thj-amb}	Thermal Resistance Junction-Ambient	Max	50	°C/W

CONNECTION DIAGRAM AND ORDERING NUMBERS (top views)

TYPE	TO-220 T _j = -40 to 125 °C	TO-220 T _j = 0 to 125 °C	OUTPUT VOLTAGE
L7905A	L7905ABV	L7905ACV	-5 V
L7952A	L7952ABV	L7952ACV	-5.2 V
L7906A	L7906ABV	L7906ACV	-6 V
L7908A	L7908ABV	L7908ACV	-8 V
L7912A	L7912ABV	L7912ACV	-12 V
L7915A	L7915ABV	L7915ACV	-15 V
L7818A	L7818ABV	L7818ACV	-18 V
L7920A	L7920ABV	L7920ACV	-20 V
L7922A	L7922ABV	L7922ACV	-22 V
L7924A	L7924ABV	L7924ACV	-24 V

APPLICATION CIRCUIT

ELECTRICAL CHARACTERISTICS FOR L7905A (refer to the test circuits, $T_j = 0$ to 125 o C, $V_i = -10V$, $I_0 = 500$ mA, $C_i = 2.2$ μ F, $C_0 = 1$ μ F unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_j = 25$ °C	-4.9	-5	-5.1	V
Vo	Output Voltage	I_0 = -5 mA to -1 A $P_0 \le 15$ W V_i = -8 to -20 V	-4.8	-5	-5.2	V
ΔV _o *	Line Regulation	$V_i = -7 \text{ to } -25 \text{ V}$ $T_j = 25 ^{\circ}\text{C}$ $V_i = -8 \text{ to } -12 \text{ V}$ $T_j = 25 ^{\circ}\text{C}$			100 50	mV mV
ΔV _o *	Load Regulation	$I_0 = 5 \text{ to } 1500 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$ $I_0 = 250 \text{ to } 750 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$			100 50	mV mV
ld	Quiescent Current	T _j = 25 °C			3	mA
ΔI_d	Quiescent Current Change	I _o = 5 to 1000 mA			0.5	mA
ΔI_{d}	Quiescent Current Change	$V_i = -8 \text{ to } -25 \text{ V}$			1.3	mA
$\frac{\Delta V_o}{\Delta T}$	Output Voltage Drift	I _o = 5 mA		-0.4		mV/°C
en	Output Noise Voltage	B = 10Hz to 100KHz $T_j = 25$ °C		100		μV
SVR	Supply Voltage Rejection	$\Delta V_i = 10 \text{ V}$ f = 120 Hz	54	60		dB
V _d	Dropout Voltage	$I_0 = 1 \text{ A}$ $T_j = 25 ^{\circ}\text{C}$ $\Delta V_0 = 100 \text{mV}$		1.4		V
I _{sc}	Short Circuit Current			2.1		Α
I _{scp}	Short Circuit Peack Current	$T_j = 25$ °C		2.5		Α

ELECTRICAL CHARACTERISTICS FOR L7952A (refer to the test circuits, $T_j = 0$ to 125 o C, $V_i = -10V$, $I_0 = 500$ mA, $C_i = 2.2$ μ F, $C_0 = 1$ μ F unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _j = 25 °C	-5.1	-5.2	-5.3	V
Vo	Output Voltage	$I_0 = -5 \text{ mA to -1 A} P_0 \le 15 \text{ W}$ $V_i = -9 \text{ to -21 V}$	-5	-5.2	-5.4	V
ΔV_{o}^{\star}	Line Regulation	$V_i = -8 \text{ to } -25 \text{ V}$ $T_j = 25 ^{\circ}\text{C}$ $V_i = -9 \text{ to } -13 \text{ V}$ $T_j = 25 ^{\circ}\text{C}$			105 52	mV mV
ΔV_o^*	Load Regulation	$I_0 = 5 \text{ to } 1500 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$ $I_0 = 250 \text{ to } 750 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$			105 52	mV mV
I _d	Quiescent Current	T _j = 25 °C			3	mA
Δl_d	Quiescent Current Change	I _o = 5 to 1000 mA			0.5	mA
ΔI_d	Quiescent Current Change	$V_i = -9 \text{ to } -25 \text{ V}$			1.3	mA
$\frac{\Delta V_o}{\Delta T}$	Output Voltage Drift	I _o = 5 mA		-0.5		mV/°C
e _N	Output Noise Voltage	B = 10Hz to 100KHz $T_j = 25$ °C		125		μV
SVR	Supply Voltage Rejection	$\Delta V_i = 10 \text{ V}$ f = 120 Hz	54	60		dB
V _d	Dropout Voltage	$I_o = 1 \text{ A}$ $T_j = 25 ^{\circ}\text{C}$ $\Delta V_O = 100 \text{mV}$		1.4		V
I _{sc}	Short Circuit Current			2.1		Α
I _{scp}	Short Circuit Peack Current	T _j = 25 °C		2.5		Α

^{*} Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken into account separately. Pulce testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS FOR L7906A (refer to the test circuits, $T_j = 0$ to 125 o C, $V_i = -11V$, $I_0 = 500$ mA, $C_i = 2.2$ μ F, $C_0 = 1$ μ F unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_j = 25$ °C	-5.88	-6	-6.12	V
Vo	Output Voltage	$I_0 = -5$ mA to -1 A $P_0 \le 15$ W $V_i = -9.5$ to -21.5 V	-5.76	-6	-6.24	V
ΔV _o *	Line Regulation	$V_i = -8.5 \text{ to } -25 \text{ V}$ $T_j = 25 ^{\circ}\text{C}$ $V_i = -9 \text{ to } -15 \text{ V}$ $T_j = 25 ^{\circ}\text{C}$			120 60	mV mV
ΔV _o *	Load Regulation	$I_0 = 5 \text{ to } 1500 \text{ mA}$ $T_j = 25 {}^{\circ}\text{C}$ $I_0 = 250 \text{ to } 750 \text{ mA}$ $T_j = 25 {}^{\circ}\text{C}$			120 60	mV mV
l _d	Quiescent Current	$T_j = 25$ °C			3	mA
ΔI_{d}	Quiescent Current Change	I _o = 5 to 1000 mA			0.5	mA
ΔI_d	Quiescent Current Change	$V_i = -9.5 \text{ to } -25 \text{ V}$			1.3	mA
$\frac{\Delta V_o}{\Delta T}$	Output Voltage Drift	I _o = 5 mA		-0.6		mV/°C
ем	Output Noise Voltage	B = 10Hz to 100KHz T _j = 25 °C		144		μV
SVR	Supply Voltage Rejection	$\Delta V_i = 10 \text{ V}$ f = 120 Hz	54	60		dB
V _d	Dropout Voltage	$I_0 = 1 \text{ A}$ $T_j = 25 ^{\circ}\text{C}$ $\Delta V_0 = 100 \text{mV}$		1.4		V
I _{sc}	Short Circuit Current			2		Α
I _{scp}	Short Circuit Peack Current	$T_j = 25$ °C		2.5		Α

ELECTRICAL CHARACTERISTICS FOR L7908A (refer to the test circuits, $T_j = 0$ to 125 o C, $V_i = -14V$, $I_0 = 500$ mA, $C_i = 2.2$ μ F, $C_0 = 1$ μ F unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_j = 25$ °C	-5.1	-5.2	-5.3	V
Vo	Output Voltage	$I_0 = -5$ mA to -1 A $P_0 \le 15$ W $V_i = -11.5$ to -23 V	-5	-5.2	-5.4	V
ΔV_{o}^{*}	Line Regulation	$V_i = -10.5 \text{ to } -25 \text{ V}$ $T_j = 25 ^{\circ}\text{C}$ $V_i = -11 \text{ to } -17 \text{ V}$ $T_j = 25 ^{\circ}\text{C}$			160 80	mV mV
ΔV_{o}^{*}	Load Regulation	$I_0 = 5 \text{ to } 1500 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$ $I_0 = 250 \text{ to } 750 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$			160 80	mV mV
I _d	Quiescent Current	$T_j = 25$ °C			3	mA
Δl_d	Quiescent Current Change	I _o = 5 to 1000 mA			0.5	mA
ΔI_d	Quiescent Current Change	V _i = -11.5 to -25 V			1	mA
$\frac{\Delta V_o}{\Delta T}$	Output Voltage Drift	I _o = 5 mA		-0.8		mV/°C
e _N	Output Noise Voltage	B = 10Hz to 100KHz $T_j = 25$ °C		175		μV
SVR	Supply Voltage Rejection	$\Delta V_i = 10 \text{ V}$ f = 120 Hz	54	60		dB
V _d	Dropout Voltage	$I_o = 1 \text{ A}$ $T_j = 25 ^{\circ}\text{C}$ $\Delta V_O = 100 \text{mV}$		1.1		V
I _{sc}	Short Circuit Current			1.5		Α
I _{scp}	Short Circuit Peack Current	T _j = 25 °C		2.5		Α

^{*} Load and line regulation are specified at constant junction temperature. Changes in V_o due to heating effects must be taken into account separately. Pulce testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS FOR L7912A (refer to the test circuits, $T_j = 0$ to 125 o C, $V_i = -19V$, $I_0 = 500$ mA, $C_i = 2.2$ μ F, $C_0 = 1$ μ F unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_j = 25$ °C	-11.75	-12	-12.75	V
Vo	Output Voltage	$I_0 = -5 \text{ mA to -1 A} P_0 \le 15 \text{ W}$ $V_i = -15.5 \text{ to -27 V}$	-11.5	-12	-12.5	V
ΔV _o *	Line Regulation	$V_i = -14.5 \text{ to } -30 \text{ V}$ $T_j = 25 ^{\circ}\text{C}$ $V_i = -16 \text{ to } -22 \text{ V}$ $T_j = 25 ^{\circ}\text{C}$			240 120	mV mV
ΔV _o *	Load Regulation	$I_0 = 5 \text{ to } 1500 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$ $I_0 = 250 \text{ to } 750 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$			240 120	mV mV
l _d	Quiescent Current	$T_j = 25$ °C			3	mA
ΔI_{d}	Quiescent Current Change	I _o = 5 to 1000 mA			0.5	mA
ΔI_{d}	Quiescent Current Change	V _i = -15 to -25 V			1	mA
$\frac{\Delta V_o}{\Delta T}$	Output Voltage Drift	I _o = 5 mA		-0.8		mV/°C
en	Output Noise Voltage	B = 10Hz to 100KHz T _j = 25 °C		200		μV
SVR	Supply Voltage Rejection	$\Delta V_i = 10 \text{ V}$ f = 120 Hz	54	60		dB
V _d	Dropout Voltage	$I_0 = 1 \text{ A}$ $T_j = 25 ^{\circ}\text{C}$ $\Delta V_0 = 100 \text{mV}$		1.1		V
I _{sc}	Short Circuit Current			2.1		Α
I _{scp}	Short Circuit Peack Current	$T_j = 25$ °C		2.5		Α

ELECTRICAL CHARACTERISTICS FOR L7915A (refer to the test circuits, $T_j = 0$ to 125 o C, $V_i = -23V$, $I_0 = 500$ mA, $C_i = 2.2$ μ F, $C_0 = 1$ μ F unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _j = 25 °C	-14.7	-15	-15.3	V
Vo	Output Voltage	$I_o = -5$ mA to -1 A $P_o \le 15$ W $V_i = -18.5$ to -30 V	-14.4	-15	-15.6	V
ΔV _o *	Line Regulation	$V_i = -17.5 \text{ to } -30 \text{ V}$ $T_j = 25 ^{\circ}\text{C}$ $V_i = -20 \text{ to } -26 \text{ V}$ $T_j = 25 ^{\circ}\text{C}$			300 150	mV mV
ΔV _o *	Load Regulation	$I_o = 5 \text{ to } 1500 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$ $I_o = 250 \text{ to } 750 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$			300 150	mV mV
I _d	Quiescent Current	T _j = 25 °C			3	mA
ΔI_d	Quiescent Current Change	I _o = 5 to 1000 mA			0.5	mA
ΔI_d	Quiescent Current Change	V _i = -18.5 to -30 V			1	mA
$\frac{\Delta V_o}{\Delta T}$	Output Voltage Drift	I _o = 5 mA		-0.9		mV/°C
e _N	Output Noise Voltage	B = 10Hz to 100KHz $T_j = 25$ °C		250		μV
SVR	Supply Voltage Rejection	$\Delta V_i = 10 \text{ V}$ f = 120 Hz	54	60		dB
V _d	Dropout Voltage	$I_{o} = 1 \text{ A}$ $T_{j} = 25 ^{\circ}\text{C}$ $\Delta V_{O} = 100 \text{mV}$		1.1		V
I _{sc}	Short Circuit Current			1.3		Α
I _{scp}	Short Circuit Peack Current	$T_j = 25$ °C		2.2		Α

^{*} Load and line regulation are specified at constant junction temperature. Changes in V_o due to heating effects must be taken into account separately. Pulce testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS FOR L7918A (refer to the test circuits, $T_j = 0$ to 125 o C, $V_i = -27V$, $I_0 = 500$ mA, $C_i = 2.2$ μ F, $C_0 = 1$ μ F unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_j = 25$ °C	-17.64	-18	-18.36	V
Vo	Output Voltage	I_0 = -5 mA to -1 A $P_0 \le 15$ W V_i = -22 to -33 V	-17.3	-18	-18.7	V
ΔV _o *	Line Regulation	$V_i = -21 \text{ to } -33 \text{ V}$ $T_j = 25 ^{\circ}\text{C}$ $V_i = -24 \text{ to } -30 \text{ V}$ $T_j = 25 ^{\circ}\text{C}$			360 180	mV mV
ΔV _o *	Load Regulation	$I_0 = 5 \text{ to } 1500 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$ $I_0 = 250 \text{ to } 750 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$			360 180	mV mV
I _d	Quiescent Current	T _j = 25 °C			3	mA
ΔI_d	Quiescent Current Change	I _o = 5 to 1000 mA			0.5	mA
ΔI_d	Quiescent Current Change	V _i = -22 to -33 V			1	mA
$\frac{\Delta V_o}{\Delta T}$	Output Voltage Drift	I _o = 5 mA		-1		mV/°C
en	Output Noise Voltage	B = 10Hz to 100KHz $T_j = 25$ °C		300		μV
SVR	Supply Voltage Rejection	$\Delta V_i = 10 \text{ V}$ f = 120 Hz	54	60		dB
V _d	Dropout Voltage	$I_0 = 1 \text{ A}$ $T_j = 25 ^{\circ}\text{C}$ $\Delta V_0 = 100 \text{mV}$		1.1		V
I _{sc}	Short Circuit Current			1.1		Α
I _{scp}	Short Circuit Peack Current	$T_j = 25$ °C		2.2		Α

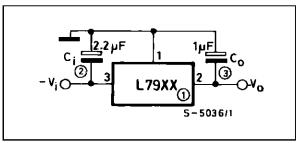
ELECTRICAL CHARACTERISTICS FOR L7920A (refer to the test circuits, $T_j = 0$ to 125 o C, $V_i = -29V$, $I_0 = 500$ mA, $C_i = 2.2$ μ F, $C_0 = 1$ μ F unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _j = 25 °C	-19.6	-20	-20.4	V
Vo	Output Voltage	$I_0 = -5 \text{ mA to } -1 \text{ A} P_0 \le 15 \text{ W}$ $V_1 = -24 \text{ to } -35 \text{ V}$	-19.2	-20	-20.8	V
ΔV _o *	Line Regulation	$V_i = -23 \text{ to } -35 \text{ V}$ $T_j = 25 ^{\circ}\text{C}$ $V_i = -26 \text{ to } -32 \text{ V}$ $T_j = 25 ^{\circ}\text{C}$			400 200	mV mV
ΔV _o *	Load Regulation	$I_0 = 5 \text{ to } 1500 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$ $I_0 = 250 \text{ to } 750 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$			400 200	mV mV
I _d	Quiescent Current	T _j = 25 °C			3	mA
ΔI_d	Quiescent Current Change	I _o = 5 to 1000 mA			0.5	mA
ΔI_d	Quiescent Current Change	V _i = -24 to -35 V			1	mA
$\frac{\Delta V_o}{\Delta T}$	Output Voltage Drift	I _o = 5 mA		-1.1		mV/°C
e _N	Output Noise Voltage	B = 10Hz to 100KHz $T_j = 25$ °C		350		μV
SVR	Supply Voltage Rejection	$\Delta V_i = 10 \text{ V}$ f = 120 Hz	54	60		dB
V _d	Dropout Voltage	$I_{o} = 1 \text{ A}$ $T_{j} = 25 ^{\circ}\text{C}$ $\Delta V_{O} = 100 \text{mV}$		1.1		V
I _{sc}	Short Circuit Current			0.9		Α
I _{scp}	Short Circuit Peack Current	$T_j = 25$ °C		2.2		Α

^{*} Load and line regulation are specified at constant junction temperature. Changes in V_o due to heating effects must be taken into account separately. Pulce testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS FOR L7922A (refer to the test circuits, $T_j = 0$ to 125 o C, $V_i = -31V$, $I_0 = 500$ mA, $C_i = 2.2$ μ F, $C_0 = 1$ μ F unless otherwise specified)

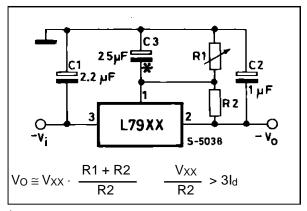
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _j = 25 °C	-21.5	-22	-22.5	V
Vo	Output Voltage	$I_0 = -5$ mA to -1 A $P_0 \le 15$ W $V_i = -26$ to -37 V	-21.1	-22	-22.9	V
ΔV_o^*	Line Regulation	$V_i = -25 \text{ to } -37 \text{ V}$ $T_j = 25 ^{\circ}\text{C}$ $V_i = -28 \text{ to } -34 \text{ V}$ $T_j = 25 ^{\circ}\text{C}$			440 220	mV mV
ΔV_o^*	Load Regulation	$I_0 = 5 \text{ to } 1500 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$ $I_0 = 250 \text{ to } 750 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$			440 220	mV mV
Id	Quiescent Current	T _j = 25 °C			3	mA
ΔI_d	Quiescent Current Change	I _o = 5 to 1000 mA			0.5	mA
ΔI_d	Quiescent Current Change	V _i = -26 to -37 V			1	mA
$\frac{\Delta V_o}{\Delta T}$	Output Voltage Drift	I _o = 5 mA		-1.1		mV/°C
ем	Output Noise Voltage	B = 10Hz to 100KHz $T_j = 25$ °C		375		μV
SVR	Supply Voltage Rejection	$\Delta V_i = 10 \text{ V}$ f = 120 Hz	54	60		dB
V _d	Dropout Voltage	$I_{o} = 1 \text{ A}$ $T_{j} = 25 ^{\circ}\text{C}$ $\Delta V_{O} = 100 \text{mV}$		1.1		V
I _{sc}	Short Circuit Current			1.1		Α
I _{scp}	Short Circuit Peack Current	$T_j = 25$ °C		2.2		Α


ELECTRICAL CHARACTERISTICS FOR L7924A (refer to the test circuits, T_j = 0 to 125 o C, V_i = -33V, I_o = 500 mA, C_i = 2.2 μ F, C_o = 1 μ F unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_j = 25$ °C	-23.5	-24	-24.5	V
Vo	Output Voltage	I_{o} = -5 mA to -1 A P_{o} ≤ 15 W V_{i} = -27 to -38 V	-23	-24	-25	V
ΔV_{o}^{*}	Line Regulation	$V_i = -27 \text{ to } -38 \text{ V}$ $T_j = 25 ^{\circ}\text{C}$ $V_i = -30 \text{ to } -36 \text{ V}$ $T_j = 25 ^{\circ}\text{C}$			480 240	mV mV
ΔV_o^*	Load Regulation	$I_0 = 5 \text{ to } 1500 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$ $I_0 = 250 \text{ to } 750 \text{ mA}$ $T_j = 25 ^{\circ}\text{C}$			480 240	mV mV
I _d	Quiescent Current	$T_j = 25$ °C			3	mA
Δl_d	Quiescent Current Change	I _o = 5 to 1000 mA			0.5	mA
ΔI_d	Quiescent Current Change	V _i = -27 to -38 V			1	mA
$\frac{\Delta V_o}{\Delta T}$	Output Voltage Drift	I _o = 5 mA		-1		mV/°C
e _N	Output Noise Voltage	B = 10Hz to 100KHz $T_j = 25$ °C		400		μV
SVR	Supply Voltage Rejection	$\Delta V_i = 10 \text{ V}$ f = 120 Hz	54	60		dB
V_d	Dropout Voltage	$I_{o} = 1 \text{ A}$ $T_{j} = 25 ^{\circ}\text{C}$ $\Delta V_{O} = 100 \text{mV}$		1.1		V
I _{sc}	Short Circuit Current			1.1		Α
I _{scp}	Short Circuit Peack Current	$T_j = 25$ °C		2.2		Α

^{*} Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken into account separately. Pulce testing with low duty cycle is used.

APPLICATION INFORMATION


Figure 1: Fixed Output Regulator.

Notes: 1. To specify an output voltage, substitute voltage value for "XX".

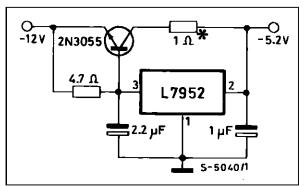

- Required for stability. For value given, capacitor must be solid tantalum. If aluminium electrolitics are used, at least ten times value shown should be selected, C_i is required if regulator is located an appreciable distance from power supply filter.
- To improve transient response. If large capacitors are used, a high current diode from input to output (1N4001 or similar) should be introduced to protect the device from momentary input short circuit.

Figure 3: Circuit for Increasing Output Voltage.

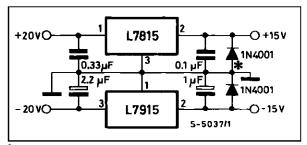

^{*} C3 Optional for improved transient response and ripple rejection.

Figure 5: Typical ECL System Power Supply (–5.2V/4A).

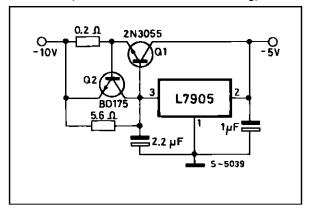

Optional dropping resistor to reduce the power dissipated in the boost transistor.

Figure 2 : Split Power Supply (± 15V/1A).

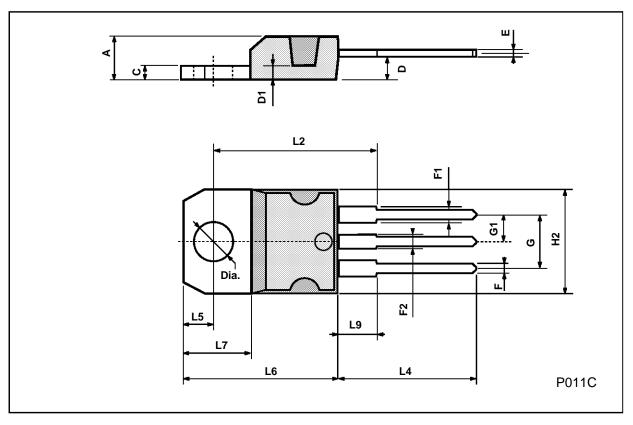

Against potential latch-up problems.

Figure 4: High Current Negative Regulator (– 5V/4A with 5A current limiting).

TO-220 MECHANICAL DATA

DIM.	mm			inch		
DIWI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	4.40		4.60	0.173		0.181
С	1.23		1.32	0.048		0.051
D	2.40		2.72	0.094		0.107
D1		1.27			0.050	
Е	0.49		0.70	0.019		0.027
F	0.61		0.88	0.024		0.034
F1	1.14		1.70	0.044		0.067
F2	1.14		1.70	0.044		0.067
G	4.95		5.15	0.194		0.203
G1	2.4		2.7	0.094		0.106
H2	10.0		10.40	0.393		0.409
L2		16.4			0.645	
L4	13.0		14.0	0.511		0.551
L5	2.65		2.95	0.104		0.116
L6	15.2		15.9	0.598		0.625
L7	6.2		6.6	0.244		0.260
L9	3.5		4.2	0.137		0.165
DIA.	3.75		3.85	0.147		0.151

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

